1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
|
import random
# 8x8_10
# 16x16_40
# 16x30_99
# under variables
UNDER_DEFAULT = 0
UNDER_BOMB = -1
# over variables
OVER_DEFAULT = '_'
OVER_FLAGGED = 'x'
OVER_UNCOVERED = 'u'
OVER_MOVES = [OVER_FLAGGED, OVER_UNCOVERED]
# board variables
BOARD_COVERED = '_'
BOARD_FLAGGED = '!'
BOARD_BOMB_UNCOVERED = 'x'
BOARD_BOMB_COVERED = '-'
BOARD_BOMB_FLAGGED = '+'
DELIMITER = '|'
# get a random seed value
def get_seed():
return random.randint(1,1000000)
class MinesweeperLogic:
# field is the bombs and the values
# board is uncovered/flagged
UNDER = []
OVER = []
# other variables
WIDTH = 0
HEIGHT = 0
BOMBS = 0
SEED = 0
MOVES = []
def do_all_moves(self):
for move in self.MOVES:
self.do_move(int(move[0]), int(move[1]), move[2])
def load(self, filename):
# get a handle to the global variables
#global WIDTH, HEIGHT, BOMBS, SEED, MOVES
# grab the lines from the file
with open(filename, 'r') as fil:
istr = fil.readline().strip()
moves = fil.readlines()
# the first line must have 4 numeric values
try:
ilist = [int(i) for i in istr.split('|')]
except ValueError as e:
return False
if len(ilist) == 4:
# set up global variables
self.WIDTH = ilist[0]
self.HEIGHT = ilist[1]
self.BOMBS = ilist[2]
self.SEED = ilist[3]
self.setup()
# validate moves
for m in moves:
vm = self.validate_move(m.strip())
if not vm:
return False
#self.MOVES.append(vm)
self.do_move(vm[0], vm[1], vm[2])
# if all the moves are valid, do them
#self.do_all_moves()
#for move in self.MOVES:
#self.do_move(int(move[0]), int(move[1]), move[2])
return True
return False
def save(self, filename=None):
# set a filename, if missing
if filename is None:
filename = "{}.sweepy".format(str(self.SEED))
with open(filename, "w") as fn:
# write the header information
fn.write("{}|{}|{}|{}\n".format(str(self.WIDTH),
str(self.HEIGHT),
str(self.BOMBS),
str(self.SEED)))
# write the moves
for move in self.MOVES:
fn.write("{}\n".format(str(move)))
def new_game(self, width=8, height=8, bombs=10):
self.WIDTH = width
self.HEIGHT = height
self.BOMBS = bombs
self.setup()
self.do_first_move()
# handle interactive highlighting
def get_first_cell(self):
for y, col in enumerate(self.OVER):
for x, cell in enumerate(col):
if cell == OVER_DEFAULT:
return y, x
def get_covered_cells(self):
out = []
for y, col in enumerate(self.OVER):
for x, cell in enumerate(col):
if cell == OVER_DEFAULT:
out.append([y,x])
return out
def closest(self, y, x):
covered_cells = self.get_covered_cells()
for point in covered_cells:
if point[0] == y and point[1] > x:
return point[0], point[1]
elif point[0] > y:
return point[0], point[1]
return covered_cells[0][0], covered_cells[0][1]
def get_closest_cell(self, y, x):
# set some defaults that will be overwritten
min_off = self.WIDTH + self.HEIGHT
ny = -1
nx = -1
# go through the directions
ry, rx, ro = self.get_right(y, x)
if 0 < ro < min_off:
min_off = ro
ny = ry
nx = rx
dy, dx, do = self.get_down(y, x)
if 0 < do < min_off:
min_off = do
ny = dy
nx = dx
ly, lx, lo = self.get_left(y, x)
if 0 < lo < min_off:
min_off = lo
ny = ly
nx = lx
uy, ux, uo = self.get_up(y, x)
if 0 < uo < min_off:
min_off = uo
ny = uy
nx = ux
# if we found something, return it
if min_off < self.WIDTH + self.HEIGHT:
return ny, nx
else:
return self.get_first_cell()
def get_left(self, y, x):
col = self.OVER[y]
for ix in range(1,x+1):
adj_x = x - ix
if col[adj_x] in (OVER_DEFAULT, OVER_FLAGGED):
return y, adj_x, abs(adj_x - x)
return y, x, 0
def get_right(self, y, x):
col = self.OVER[y]
for ix in range(x+1,len(col)):
if col[ix] in (OVER_DEFAULT, OVER_FLAGGED):
return y, ix, abs(ix - x)
return y, x, 0
def get_up(self, y, x):
row = [self.OVER[i][x] for i in range(len(self.OVER))]
for iy in range(1,y+1):
adj_y = y - iy
if row[adj_y] in (OVER_DEFAULT, OVER_FLAGGED):
return adj_y, x, abs(adj_y - y)
return y, x, 0
def get_down(self, y, x):
row = [self.OVER[i][x] for i in range(len(self.OVER))]
for iy in range(y+1, len(row)):
if row[iy] in (OVER_DEFAULT, OVER_FLAGGED):
return iy, x, abs(iy - y)
return y, x, 0
def do_first_move(self):
for y, col in enumerate(self.UNDER):
for x, cell in enumerate(self.UNDER[y]):
if cell == UNDER_DEFAULT:
self.do_move(y, x, OVER_UNCOVERED)
return
def validate_move(self, move):
if type(move) is list:
mlist = move
else:
mlist = move.split(DELIMITER)
try:
if not 0 <= int(mlist[0]) < self.WIDTH:
return None
mlist[0] = int(mlist[0])
if not 0 <= int(mlist[1]) < self.HEIGHT:
return None
mlist[1] = int(mlist[1])
if mlist[2] in OVER_MOVES:
return mlist
except ValueError as e:
return None
# returns true if move is successful/valid
# returns false otherwise
def do_move(self, col, row, move, propagated=False):
# if the cell hasn't been uncovered, try to uncover it
if self.OVER[col][row] == OVER_DEFAULT:
if move == OVER_FLAGGED:
if not propagated:
self.MOVES.append("{}|{}|{}".format(str(col), str(row), move))
self.OVER[col][row] = move
elif move == OVER_UNCOVERED:
# uncover the targeted cell
if not propagated:
self.MOVES.append("{}|{}|{}".format(str(col), str(row), move))
self.OVER[col][row] = move
# if the uncovered cell is the default,
# uncover neighboring cells
if self.UNDER[col][row] == UNDER_DEFAULT:
neighbors = self.get_valid_neighbors(col, row)
for n in neighbors:
n.extend(move) # add the move to the neighbor
vm = self.validate_move(n)
if vm and self.UNDER[vm[0]][vm[1]] != UNDER_BOMB:
self.do_move(vm[0], vm[1], vm[2], True)
elif self.OVER[col][row] == OVER_FLAGGED and move == OVER_FLAGGED:
if not propagated:
self.MOVES.append("{}|{}|{}".format(str(col), str(row), move))
self.OVER[col][row] = OVER_DEFAULT
else:
return False
def setup(self):
# grab a handle to the global variables
if self.SEED == 0:
self.SEED = get_seed()
# initialize with the width
# use None objects, as these will be ultimately be lists
self.UNDER = [None] * self.WIDTH
self.OVER = [None] * self.WIDTH
# add the height rows (use the defaults)
for i in range(self.WIDTH):
under_row = [UNDER_DEFAULT] * self.HEIGHT
self.UNDER[i] = under_row
over_row = [OVER_DEFAULT] * self.HEIGHT
self.OVER[i] = over_row
# generate and place the bombs
random.seed(self.SEED)
for i in range(self.BOMBS):
while True:
w = random.randint(0, self.WIDTH - 1)
h = random.randint(0, self.HEIGHT - 1)
if self.UNDER[w][h] == UNDER_DEFAULT:
self.UNDER[w][h] = UNDER_BOMB
break
# calculate the values next to the bombs
for w in range(self.WIDTH):
for h in range(self.HEIGHT):
if self.UNDER[w][h] == UNDER_BOMB:
neighbors = self.get_valid_neighbors(w, h)
for n in neighbors:
if self.UNDER[n[0]][n[1]] != UNDER_BOMB:
self.UNDER[n[0]][n[1]] += 1
def get_valid_neighbors(self, col, row):
# calculate the values
col_left = col - 1
col_right = col + 1
row_up = row - 1
row_down = row + 1
# calculate which directions we can go
left = True if col_left >= 0 else False
right = True if col_right < self.WIDTH else False
up = True if row_up >= 0 else False
down = True if row_down < self.HEIGHT else False
# valid neighbors
vns = []
if left and up:
vns.append([col_left, row_up])
if left:
vns.append([col_left, row])
if left and down:
vns.append([col_left, row_down])
if right and up:
vns.append([col_right, row_up])
if right:
vns.append([col_right, row])
if right and down:
vns.append([col_right, row_down])
if up:
vns.append([col, row_up])
if down:
vns.append([col, row_down])
return vns
def has_won(self):
# win condition: all non-bombs are uncovered
for w in range(0,self.WIDTH):
for h in range(0,self.HEIGHT):
if self.UNDER[w][h] != UNDER_BOMB and self.OVER[w][h] != OVER_UNCOVERED:
return False
return True
def has_lost(self):
# lose condition: at least one bomb is uncovered
for w in range(0,self.WIDTH):
for h in range(0,self.HEIGHT):
if self.UNDER[w][h] == UNDER_BOMB and self.OVER[w][h] == OVER_UNCOVERED:
return True
return False
def get_board(self):
# this will be what the user sees
lost = self.has_lost()
out = []
for c in range(self.WIDTH):
col = self.OVER[c]
inner = []
for r in range(self.HEIGHT):
row = col[r]
under_cell = self.UNDER[c][r]
if row == OVER_UNCOVERED and under_cell >= 0:
inner.append(str(under_cell))
elif row == OVER_UNCOVERED:
inner.append(BOARD_BOMB_UNCOVERED)
elif row == OVER_FLAGGED:
if lost and under_cell == UNDER_BOMB:
inner.append(BOARD_BOMB_FLAGGED)
else:
inner.append(BOARD_FLAGGED)
else:
if lost and under_cell == UNDER_BOMB:
inner.append(BOARD_BOMB_COVERED)
else:
inner.append(BOARD_COVERED)
out.append(inner)
return out
def get_flag_count(self):
total = 0
for col in self.OVER:
for cell in col:
if cell == OVER_FLAGGED:
total += 1
return total
|