1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
|
from .. import TypeEnum, Environment, Arg, Builtin, evaluate, InterpretPanic, MultiFunction
from ..structs import *
import math
MATH = Environment()
def interpretLessThanEqual(symbol, args, env, ns):
return Bool(args[0].value <= args[1].value)
compare_arg = Arg("num", TypeEnum.NUMBER)
lte_func = Builtin("<=", interpretLessThanEqual, [compare_arg, compare_arg], return_type=Type(":bool"))
lte_multi = MultiFunction("<=")
lte_multi.register(lte_func)
MATH.register("<=", lte_multi)
def interpretGreaterThan(symbol, args, env, ns):
return Bool(args[0].value > args[1].value)
gt_func = Builtin(">", interpretGreaterThan, [compare_arg, compare_arg], return_type=Type(":bool"))
gt_multi = MultiFunction(">")
gt_multi.register(gt_func)
MATH.register(">", gt_multi)
def interpretGreaterThanEqual(symbol, args, env, ns):
return Bool(args[0].value >= args[1].value)
gte_func = Builtin(">=", interpretGreaterThanEqual, [compare_arg, compare_arg], return_type=Type(":bool"))
gte_multi = MultiFunction(">=")
gte_multi.register(gte_func)
MATH.register(">=", gte_multi)
def interpretLessThan(symbol, args, env, ns):
return Bool(args[0].value < args[1].value)
lt_func = Builtin("<", interpretLessThan, [compare_arg, compare_arg], return_type=Type(":bool"))
lt_multi = MultiFunction("<")
lt_multi.register(lt_func)
MATH.register("<", lt_multi)
def interpretAddition(symbol, args, env, ns):
res = 0
for arg in args:
res += arg.value
if isinstance(res, float):
return Float(res)
else:
return Int(res)
term_arg = Arg("term", TypeEnum.NUMBER)
add_func = Builtin("+", interpretAddition, [term_arg], term_arg, Type(":number"))
add_multi = MultiFunction("+")
add_multi.register(add_func)
MATH.register("+", add_multi)
def interpretSubtraction(symbol, args, env, ns):
if len(args) == 1:
res = -args[0].value
else:
res = args[0].value
for arg in args[1:]:
res -= arg.value
if isinstance(res, float):
return Float(res)
else:
return Int(res)
sub_func = Builtin("-", interpretSubtraction, [term_arg], term_arg, Type(":number"))
sub_multi = MultiFunction("-")
sub_multi.register(sub_func)
MATH.register("-", sub_multi)
def interpretMultiplication(symbol, args, env, ns):
res = args[0].value
for arg in args[1:]:
res = res * arg.value
if isinstance(res, float):
return Float(res)
else:
return Int(res)
factor_arg = Arg("factor", TypeEnum.NUMBER)
mult_func = Builtin("*", interpretMultiplication, [factor_arg, factor_arg], factor_arg, Type(":number"))
mult_multi = MultiFunction("*")
mult_multi.register(mult_func)
MATH.register("*", mult_multi)
def interpretDivision(symbol, args, env, ns):
ret = args[0].value / args[1].value
if int(ret) == ret:
return Int(int(ret))
else:
return Float(ret)
div_func = Builtin("/", interpretDivision, [factor_arg, factor_arg], return_type=Type(":number"))
div_multi = MultiFunction("/")
div_multi.register(div_func)
MATH.register("/", div_multi)
def interpretFloor(symbol, args, env, ns):
return Int(math.floor(args[0].value))
floor_func = Builtin("floor", interpretFloor, [Arg("floor", TypeEnum.NUMBER)], return_type=Type(":int"))
floor_multi = MultiFunction("floor")
floor_multi.register(floor_func)
MATH.register("floor", floor_multi)
|