1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
|
from .lexer import lex
from .parser import parse
from .exceptions import *
from .typeclass import TypeEnum, is_subtype_of
from .structs import *
from copy import deepcopy
def interpret(exprs, env, ns=None):
ret = None
for expr in exprs:
ret = evaluate(expr, env, ns)
return ret
def syntaxDef(symbol, arg, env, ns):
res = evaluate(arg, env, ns)
env.register(symbol.name, res)
return List([])
def syntaxFunc(symbol, env, ns):
func = UserFunction(symbol.name, symbol.args, symbol.many, symbol.body)
func.return_type = symbol.return_type
if symbol.name != "<lambda>":
# register into the environment
if env.contains(symbol.name):
env_func = env.get(symbol.name)
if isinstance(env_func, MultiFunction):
env_func.register(func)
env.register(symbol.name, env_func)
else:
raise InterpretPanic(symbol, "not a multifunc!")
else:
mf = MultiFunction(symbol.name)
mf.register(func)
env.register(symbol.name, mf)
return List([])
else:
return func
def evaluate(expr, env, ns=None):
if isinstance(expr, Literal) or isinstance(expr, Callable) or isinstance(expr, TypeWrap) or isinstance(expr, List) or isinstance(expr, Handle):
return expr
elif isinstance(expr, Symbol) or isinstance(expr, Type):
if isinstance(expr, Symbol) and expr.quoted:
return Symbol(expr.name, expr.line)
if env.contains(expr.name):
if isinstance(expr, Type) and expr.inner is not None:
typecopy = deepcopy(env.get(expr.name))
inner = env.get(f"{expr.inner}")
typecopy.name.inner = inner
return evaluate(typecopy, env, ns)
else:
return evaluate(env.get(expr.name), env, ns)
elif ns is not None and env.contains(f"{ns}/{expr.name}"):
if isinstance(expr, Type) and expr.inner is not None:
typecopy = deepcopy(env.get(f"{ns}/{expr.name}"))
inner = env.get(f"{expr.inner}")
typecopy.name.inner = inner
return evaluate(typecopy, env, ns)
else:
return evaluate(env.get(f"{ns}/{expr.name}"), env, ns)
else:
if isinstance(expr, Symbol):
raise NebPanic(f"no such symbol: {expr}")
else:
raise NebPanic(f"no such type {expr}")
# if it's an empty list, return it
elif len(expr.args) == 0:
return expr
elif isinstance(expr.args[0], Expr):
ev = evaluate(expr.args[0], env, ns)
return evaluate(Expr([ev] + expr.args[1:]), env, ns)
elif isinstance(expr.args[0], Callable):
return expr.args[0].call(expr, env, ns)
elif isinstance(expr.args[0], NebDef):
return syntaxDef(expr.args[0], expr.args[1], env, ns)
elif isinstance(expr.args[0], NebFuncDef):
return syntaxFunc(expr.args[0], env, ns)
elif not isinstance(expr.args[0], Symbol):
raise NebPanic("can't evaluate without a symbol")
name = expr.args[0].name
if env.contains(name):
return env.get(name).call(expr, env, ns)
elif ns is not None and env.contains(f"{ns}/{name}"):
return env.get(f"{ns}/{name}").call(expr, env, ns)
else:
raise InterpretPanic(expr.args[0], "unable to evaluate")
class Signature:
def __init__(self, *args, many=None, return_type=None):
self.args = args
self.many = many
if return_type is None:
self.return_type = Type(":any")
def compatable_arity(self, arity):
if arity < len(self.args):
return False
elif self.many is None and arity > len(self.args):
return False
else:
return True
def arity_str(self):
out = f"{len(self.args)}"
if self.many is not None:
out += "+"
return out
def get_type_by_idx(self, idx):
if idx < len(self.args):
return self.args[idx]
else:
return self.many
def __str__(self):
out = ""
for arg in self.args:
out = f"{out}{arg}"
if self.many is not None:
out = f"{out}{self.many}"
return out
class Callable:
def __init__(self, name, params, body, args=None, many=None):
self.name = name
self.params = params
self.body = body
self.args = args
self.many = many
self.type_ = Type(":any") # TODO no it's not
self.return_type = Type(":any")
if args is None:
self.sig = Signature(many=many)
else:
self.sig = Signature(*args, many=many)
def describe(self, name=None):
if name is None:
name = self.name
out = [f"({name}"]
out.append(string_args(self.args, self.many))
return " ".join(out).strip() + f") => {self.return_type}"
def arity_check(self, symbol, params):
min_arity = len([a for a in self.args if not a.optional])
max_arity = -1 if self.many is not None else len(self.args)
if len(params) < min_arity or (max_arity >= 0 and len(params) > max_arity):
if max_arity < 0:
fmt = f"{min_arity}+"
elif min_arity != max_arity:
fmt = f"{min_arity}-{max_arity}"
else:
fmt = f"{min_arity}"
raise InterpretPanic(symbol, f"expected [{fmt}] arguments, received {len(params)}")
return True
def call(self, expr, env):
pass
class MultiFunction(Callable):
def __init__(self, name):
super().__init__(name, None, None)
self.impls = {}
def __str__(self):
builtin_count = len(list(x for x in self.impls.values() if isinstance(x, Builtin)))
userfunc_count = len(list(x for x in self.impls.values() if isinstance(x, UserFunction)))
b = ""
uf = ""
if builtin_count != 0:
b = f"{builtin_count} builtin"
if userfunc_count != 0:
uf = f"{userfunc_count} user defined"
if b != "" and uf != "":
desc = f"{b}, {uf}"
else:
desc = b if b != "" else uf
return f"function {self.name} ({desc})"
def describe(self):
return [i.describe() for i in self.impls.values()]
def user_impl(self):
return len(list(x for x in self.impls.values() if isinstance(x, UserFunction))) != 0
def register(self, impl):
self.impls[f"{impl.sig}"] = impl
def call(self, expr, env, ns):
symbol = expr.args[0]
params = expr.args[1:]
# get compatable arities
compatable_arities = [k for k,v in self.impls.items() if v.sig.compatable_arity(len(params))]
if len(compatable_arities) == 0:
fmt = "|".join(f"{v.sig.arity_str()}" for v in self.impls.values())
raise InterpretPanic(symbol, f"expected [{fmt}] arguments, received {len(params)}")
ret = []
prev_candidates = []
current_types = []
next_candidates = compatable_arities
for param_idx, param in enumerate(params):
# evaluate the parameter
ev = evaluate(param, env, ns)
# reset the types we may be looking for
current_types = []
prev_candidates = next_candidates[:]
next_candidates = []
# loop through candidate functions
for candidate in prev_candidates:
func = self.impls[candidate]
exp = func.sig.get_type_by_idx(param_idx)
expected_type = evaluate(exp.type_, env, ns)
current_types.append(expected_type)
valid = expected_type.validate_type(ev, env, ns)
if valid.value:
next_candidates.append(candidate)
# if we have no more good functions, panic
if len(next_candidates) == 0:
fmt = "|".join(f"{t}" for t in current_types)
rec = f"{ev.type_}"
raise InterpretPanic(symbol, f"received {rec}, expected {fmt}", ev)
else:
ret.append(ev)
if len(next_candidates) != 1:
raise InterpretPanic(symbol, "ambiguous definition!")
return self.impls[next_candidates[0]].call(Expr([symbol] + ret), env, ns)
class Special(Callable):
def __init__(self, name, params, body, args=None, many=None):
super().__init__(name, params, body, args, many)
class NebSyntax(Special):
def __init__(self, name, callable_, args=None, many=None, return_type=None):
super().__init__(name, None, callable_, args, many)
if return_type is not None:
self.return_type = return_type
def __str__(self):
return f"syntax function {self.name}"
def call(self, expr, env, ns):
return self.body(expr.args[0], expr.args[1:], env, ns)
class Builtin(Callable):
def __init__(self, name, callable_, args=None, many=None, return_type=None):
super().__init__(name, None, callable_, args, many)
if return_type is not None:
self.return_type = return_type
def __str__(self):
return f"builtin function {self.name}"
def call(self, expr, env, ns):
return self.body(expr.args[0], expr.args[1:], env, ns)
class UserFunction(Callable):
def __init__(self, name, params, many, body):
super().__init__(name, params, body, params, many)
def __str__(self):
out = f"(func {self.name} {self.return_type} ("
args_list = [f"{a.name} {a.type_}" for a in self.args]
if self.many:
args_list.append(f"{self.many.name} {self.many.type_}")
out = out + " ".join(args_list) + ") "
for expr in self.body:
out = out + f"{expr} "
return out.strip() + ")"
def call(self, expr, env, ns):
evaluated_args = expr.args[1:]
this_env = Environment(env)
for idx, param in enumerate(self.params):
this_env.register(param.name, evaluated_args[idx])
# if we got "many", wrap the rest in a list
if self.many:
this_env.register(self.many.name, List(evaluated_args[len(self.params):]))
return interpret(self.body, env=this_env, ns=ns)
class TypeWrap:
def __init__(self, name, parent, is_func):
self.name = ALL_TYPES[name]
self.parent = parent
self.is_func = is_func
self.type_ = Type(":type")
def validate_type(self, target, env, ns):
# if it's an any type, it's valid
if self.parent is None:
return Bool(True)
if isinstance(self.is_func, MultiFunction):
valid = self.is_func.call(Expr([self.name, target]), env, ns)
else:
valid = self.is_func(self.name, [target], env, ns)
if valid.value == True:
return valid
parent_type = env.get(target.type_.name)
while valid.value != True and parent_type.parent is not None:
parent_type = env.get(parent_type.parent.name.name)
valid = Bool(self.name == parent_type.name) # TODO wrong
return valid
def __str__(self):
return f"{self.name}"
class NebType(TypeWrap):
pass
class UserType(TypeWrap):
def __init__(self, name, parent, is_func):
if name in ALL_TYPES:
raise NebPanic(f"already a type called {name}")
ALL_TYPES[name] = Type(name)
super().__init__(name, parent, is_func)
|