aboutsummaryrefslogtreecommitdiff
path: root/neb/interpreter.py
diff options
context:
space:
mode:
authormryouse2022-06-21 01:49:29 +0000
committermryouse2022-06-21 01:49:29 +0000
commit776fe3193b515c028b5ac69326baed51d760d32f (patch)
treedb111c3fe7a20143b2f058259f86dbbecae4cbd6 /neb/interpreter.py
parentb1550660adaca68bb38541aed371e36b7000e124 (diff)
refactor: break stdlib into several files
Diffstat (limited to 'neb/interpreter.py')
-rw-r--r--neb/interpreter.py870
1 files changed, 0 insertions, 870 deletions
diff --git a/neb/interpreter.py b/neb/interpreter.py
deleted file mode 100644
index 6565adf..0000000
--- a/neb/interpreter.py
+++ /dev/null
@@ -1,870 +0,0 @@
-from .structs import *
-from .exceptions import *
-from .lexer import lex
-from .parser import parse
-from .typeclass import TypeEnum, is_subtype_of
-from pathlib import Path
-from glob import glob
-import subprocess
-import shlex
-import random
-import sys
-import math
-
-class Function:
-
- def __init__(self, name, params, body, args=None, many=None):
- self.name = name
- self.params = params
- self.body = body
- self.args = args
- self.many = many
- self.type_ = TypeEnum.ANY # TODO no it's not
-
- def describe(self, name=None):
- if name is None:
- name = self.name
- out = [f"({name}"]
- if self.args is not None:
- for arg in self.args:
- out.append(f"{arg}")
- if self.many is not None:
- out.append(f"{self.many}")
- return " ".join(out) + ")"
-
- def arity_check(self, symbol, params):
- min_arity = len([a for a in self.args if not a.optional])
- max_arity = -1 if self.many is not None else len(self.args)
-
- if len(params) < min_arity or (max_arity >= 0 and len(params) > max_arity):
- if max_arity < 0:
- fmt = f"{min_arity}+"
- elif min_arity != max_arity:
- fmt = f"{min_arity}-{max_arity}"
- else:
- fmt = f"{min_arity}"
- raise InterpretPanic(symbol, f"expected [{fmt}] arguments, received {len(params)}")
- return True
-
- def evaluate_args(self, symbol, params, env, ns):
- self.arity_check(symbol, params)
- ret = []
-
- for idx, param in enumerate(params):
- if idx < len(self.args):
- arg = self.args[idx]
- else:
- arg = self.many
- if arg.lazy:
- ret.append(param)
- continue
- ev = evaluate(param, env, ns)
- if not is_subtype_of(ev.type_, arg.type_):
- exp = f"{arg.type_}"
- rec = f"{ev.type_}"
- raise InterpretPanic(symbol, f"received {rec}, expected {exp}", ev)
- ret.append(ev)
- return ret
-
- def call(self, expr, env):
- pass
-
-class Builtin(Function):
-
- def __init__(self, callable_, args=None, many=None):
- super().__init__("<builtin>", None, callable_, args, many)
-
- def __str__(self):
- return f"builtin function {self.name}"
-
- def call(self, expr, env, ns):
- self.arity_check(expr.args[0], expr.args[1:])
- evaluated_args = self.evaluate_args(expr.args[0], expr.args[1:], env, ns)
- return self.body(expr.args[0], evaluated_args, env, ns)
-
-
-class UserFunction(Function):
-
- def __init__(self, name, params, body):
- newparams, args, many = self.process_params(name, params)
- super().__init__(name, newparams, body, args, many)
-
- def __str__(self):
- out = f"(func {self.name} ("
- args_list = [f"{a.name} {a.type_}" for a in self.args]
- if self.many:
- args_list.append(f"{self.many.name} {self.many.type_}")
- out = out + " ".join(args_list) + ") "
- for expr in self.body:
- out = out + f"{expr} "
- return out.strip() + ")"
-
-
- def process_params(self, name, params):
- newparams = []
- args = []
- many = None
- prev_type = False
- first = True
- for param in params:
- if isinstance(param, Symbol):
- if many is not None:
- raise NebPanic("& must be last argument")
- if param.name == "&":
- many = Arg(param.name, TypeEnum.ANY)
- else:
- newparams.append(param)
- args.append(Arg(param.name, TypeEnum.ANY))
- prev_type = False
- elif isinstance(param, Type) and not prev_type and not first:
- typ = TypeEnum.__getattr__(param.name[1:].upper())
- if many is None:
- args[-1].type_ = typ
- else:
- many.type_ = typ
- prev_type = True
- else:
- raise NebPanic("invalid :func signature", param)
- first = False
- return newparams, args, many
-
- def call(self, expr, env, ns):
- self.arity_check(expr.args[0], expr.args[1:])
- evaluated_args = self.evaluate_args(expr.args[0], expr.args[1:], env, ns)
- this_env = Environment(env)
- for idx, param in enumerate(self.params):
- this_env.register(param.name, evaluated_args[idx])
-
- # if we got "many", wrap the rest in a list
- if self.many:
- this_env.register(self.many.name, List(evaluated_args[len(self.params):]))
-
- return interpret(self.body, env=this_env, ns=ns)
-
-GLOBALS = Environment()
-
-def interpret(exprs, *, env=GLOBALS, ns=None):
- ret = None
- for expr in exprs:
- ret = evaluate(expr, env, ns)
- return ret
-
-def evaluate(expr, env, ns=None):
- if isinstance(expr, Literal) or isinstance(expr, Function) or isinstance(expr, Type):
- return expr
- elif isinstance(expr, Symbol):
- if env.contains(expr.name):
- return evaluate(env.get(expr.name), env, ns)
- elif ns is not None and env.contains(f"{ns}/{expr.name}"):
- return evaluate(env.get(f"{ns}/{expr.name}"), env, ns)
- else:
- raise NebPanic(f"no such symbol: {expr}")
-
- # if it's an empty list, return it
- elif len(expr.args) == 0:
- return expr
-
- if not isinstance(expr.args[0], Symbol):
- raise NebPanic("can't evaluate without a symbol")
- name = expr.args[0].name
- if env.contains(name):
- return env.get(name).call(expr, env, ns)
- elif ns is not None and env.contains(f"{ns}/{name}"):
- return env.get(f"{ns}/{name}").call(expr, env, ns)
- else:
- raise InterpretPanic(expr.args[0], "unable to evaluate")
-
-def interpretOr(symbol, args, env, ns):
- # or returns true for the first expression that returns true
- for arg in args:
- ev = evaluate(arg, env, ns)
- if not isinstance(ev, Bool):
- raise InterpretPanic(symbol, "requires :bool arguments")
- if ev.value == True:
- return ev
- return Bool(False)
-
-or_arg = Arg("arg", TypeEnum.BOOL, lazy=True)
-GLOBALS.register("or", Builtin(interpretOr, [or_arg, or_arg], or_arg))
-
-def interpretAnd(symbol, args, env, ns):
- # and returns false for the first expression that returns false
- for arg in args:
- ev = evaluate(arg, env, ns)
- if not isinstance(ev, Bool):
- raise InterpretPanic(symbol, "requires :bool arguments")
- if ev.value == False:
- return ev
- return Bool(True)
-
-GLOBALS.register("and", Builtin(interpretAnd, [or_arg, or_arg], or_arg))
-
-def interpretEq(symbol, args, env, ns):
- # NOTE this currently only works for literals
- # compare types because 0 != #false in neb
- if type(args[0]) == type(args[1]) and args[0].value == args[1].value:
- return Bool(True)
- else:
- return Bool(False)
-
-eq_arg = Arg("value", TypeEnum.LITERAL)
-GLOBALS.register("eq?", Builtin(interpretEq, [eq_arg, eq_arg]))
-
-def interpretGreaterThan(symbol, args, env, ns):
- return Bool(args[0].value > args[1].value)
-
-compare_arg = Arg("num", TypeEnum.NUMBER)
-GLOBALS.register(">", Builtin(interpretGreaterThan, [compare_arg, compare_arg]))
-
-def interpretGreaterThanEqual(symbol, args, env, ns):
- return Bool(args[0].value >= args[1].value)
-
-GLOBALS.register(">=", Builtin(interpretGreaterThanEqual, [compare_arg, compare_arg]))
-
-def interpretLessThan(symbol, args, env, ns):
- return Bool(args[0].value < args[1].value)
-
-GLOBALS.register("<", Builtin(interpretLessThan, [compare_arg, compare_arg]))
-
-def interpretLessThanEqual(symbol, args, env, ns):
- return Bool(args[0].value <= args[1].value)
-
-GLOBALS.register("<=", Builtin(interpretLessThanEqual, [compare_arg, compare_arg]))
-
-def interpretAddition(symbol, args, env, ns):
- res = 0
- for arg in args:
- res += arg.value
- if isinstance(res, float):
- return Float(res)
- else:
- return Int(res)
-
-term_arg = Arg("term", TypeEnum.NUMBER)
-GLOBALS.register("+", Builtin(interpretAddition, [term_arg], term_arg))
-
-def interpretSubtraction(symbol, args, env, ns):
- if len(args) == 1:
- res = -args[0].value
- else:
- res = args[0].value
- for arg in args[1:]:
- res -= arg.value
- if isinstance(res, float):
- return Float(res)
- else:
- return Int(res)
-
-GLOBALS.register("-", Builtin(interpretSubtraction, [term_arg], term_arg))
-
-def interpretMultiplication(symbol, args, env, ns):
- res = args[0].value
- for arg in args[1:]:
- res = res * arg.value
- if isinstance(res, float):
- return Float(res)
- else:
- return Int(res)
-
-factor_arg = Arg("factor", TypeEnum.NUMBER)
-GLOBALS.register("*", Builtin(interpretMultiplication, [factor_arg, factor_arg], factor_arg))
-
-def interpretDivision(symbol, args, env, ns):
- ret = args[0].value / args[1].value
- if int(ret) == ret:
- return Int(int(ret))
- else:
- return Float(ret)
-
-GLOBALS.register("/", Builtin(interpretDivision, [factor_arg, factor_arg]))
-
-def interpretNot(symbol, args, env, ns):
- return Bool(not args[0].value)
-
-not_arg = Arg("not", TypeEnum.BOOL)
-GLOBALS.register("not", Builtin(interpretNot, [not_arg]))
-
-def interpretIf(symbol, args, env, ns):
- if args[0].value:
- return evaluate(args[1], env, ns)
- elif len(args) == 3:
- return evaluate(args[2], env, ns)
- return List([])
-
-cond = Arg("cond", TypeEnum.BOOL)
-t_branch = Arg("t-branch", TypeEnum.ANY, lazy=True)
-f_branch = Arg("f-branch", TypeEnum.ANY, optional=True, lazy=True)
-GLOBALS.register("if", Builtin(interpretIf, [cond, t_branch, f_branch]))
-
-def interpretPrint(symbol, args, env, ns):
- print(args[0].value)
- return List([]) # print returns nothing
-
-GLOBALS.register("print", Builtin(interpretPrint, [Arg("arg", TypeEnum.STRING)]))
-
-def interpretDef(symbol, args, env, ns):
-
- if not isinstance(args[0], Symbol):
- raise InterpretPanic(symbol, "requires a :string name", args[0])
- name = args[0].name # NOTE: we are not evaluating the name!!
- if not isinstance(name, str):
- raise InterpretPanic(symbol, "requires a :string name")
-
- env.register(name, args[1]) # TODO since this isn't lazily evaluated, side effects are allowed (bad!)
-
- return List([])
-
-def_name_arg = Arg("name", TypeEnum.ANY, lazy=True)
-def_val_arg = Arg("value", TypeEnum.ANY)
-GLOBALS.register("def", Builtin(interpretDef, [def_name_arg, def_val_arg]))
-
-def interpretRedef(symbol, args, env, ns):
- if not isinstance(args[0], Symbol):
- raise InterpretPanic(symbol, "requires a :string name", args[0])
- name = args[0].name # NOTE: we are not evaluating the name!!
- if not env.contains(name):
- raise InterpretPanic(symbol, "not previously defined", args[0])
-
- env.reregister(name, args[1])
- return List([])
-
-GLOBALS.register("redef", Builtin(interpretRedef, [def_name_arg, def_val_arg]))
-
-def interpretLambda(symbol, args, env, ns):
- if len(args[0].args) != 0:
- func = UserFunction("<lambda>", args[0].args, args[1:])
- else:
- func = UserFunction("<lambda>", [], args[1:])
- return func
-
-lambda_args_arg = Arg("args", TypeEnum.ANY, lazy=True)
-lambda_body_arg = Arg("body", TypeEnum.ANY, lazy=True)
-GLOBALS.register("lambda", Builtin(interpretLambda, [lambda_args_arg, lambda_body_arg], lambda_body_arg))
-
-def interpretToString(symbol, args, env, ns):
- item = args[0]
- if isinstance(item, String):
- return item
- elif isinstance(item, Literal):
- return String(str(item))
- else:
- return String(f"{item}")
-
-GLOBALS.register("->string", Builtin(interpretToString, [Arg("arg", TypeEnum.ANY)]))
-
-def interpretConcat(symbol, args, env, ns):
- out = ""
- for arg in args:
- out += arg.value
- return String(out)
-
-string_arg = Arg("arg", TypeEnum.STRING)
-GLOBALS.register("concat", Builtin(interpretConcat, [string_arg, string_arg], string_arg))
-
-def interpretForCount(symbol, args, env, ns):
- new_env = Environment(env)
- ret = None
- for idx in range(0, args[0].value):
- new_env.register("idx", Int(idx + 1))
- for arg in args[1:]:
- ret = evaluate(arg, new_env, ns)
- if ret is None:
- return List([])
- return ret
-
-for_count_arg = Arg("count", TypeEnum.INT)
-for_body_arg = Arg("body", TypeEnum.ANY, lazy=True)
-GLOBALS.register("for-count", Builtin(interpretForCount, [for_count_arg, for_body_arg], for_body_arg))
-
-def interpretForEach(symbol, args, env, ns):
- new_env = Environment(env)
- ret = None
- for item in args[0].args:
- new_env.register("_item_", evaluate(item, env, ns))
- for arg in args[1:]:
- ret = evaluate(arg, new_env, ns)
- if ret is None:
- return List([])
- return ret
-
-for_each_arg = Arg("list", TypeEnum.LIST)
-GLOBALS.register("for-each", Builtin(interpretForEach, [for_each_arg, for_body_arg], for_body_arg))
-
-def interpretPipe(symbol, args, env, ns):
- new_env = Environment(env)
- pipe = None
- for arg in args:
- if pipe is not None:
- new_env.register("items", pipe)
- pipe = evaluate(arg, new_env, ns)
- if pipe is None:
- return List([])
- return pipe
-
-# TODO
-GLOBALS.register("|", Builtin(interpretPipe, 2))
-
-def interpretBranch(symbol, args, env, ns):
- for arg in args:
- if len(arg.args) != 2:
- raise InterpretPanic(symbol, "each branch requires two expressions")
- cond = evaluate(arg.args[0], env, ns) # this is the condition
- if not isinstance(cond, Bool):
- raise InterpretPanic(symbol, "branch condition must be :bool", cond)
- if cond.value:
- return evaluate(arg.args[1], env, ns)
- return List([])
-
-GLOBALS.register("branch", Builtin(interpretBranch, [for_body_arg], for_body_arg))
-
-def interpretFunc(symbol, args, env, ns):
- if not isinstance(args[0], Symbol):
- raise InterpretPanic(symbol, "requires a :string name")
- name = args[0].name # NOTE: we are not evaluating the name!!
-
- if ns is not None:
- name = f"{ns}/{name}"
-
- # compose a lambda
- func = interpretLambda(None, args[1:], env, ns)
-
- # add the name to the function
- func.name = name
-
- env.register(name, func)
- return List([])
-
-GLOBALS.register("func", Builtin(interpretFunc, [def_name_arg, lambda_args_arg, lambda_body_arg], lambda_body_arg))
-
-def interpretReadLines(symbol, args, env, ns):
- target_file_name = args[0].value
- target_file = Path(target_file_name).resolve()
- if not target_file.exists():
- raise InterpretPanic(symbol, "no such file", target_file)
- with open(target_file, "r") as fil:
- data = fil.readlines()
- out = List([String(d) for d in data]) # all lines are strings
- return out
-
-GLOBALS.register("read-lines", Builtin(interpretReadLines, [Arg("filename", TypeEnum.STRING)]))
-
-def interpretStrip(symbol, args, env, ns):
- return String(args[0].value.strip())
-
-GLOBALS.register("strip", Builtin(interpretStrip, [Arg("filename", TypeEnum.STRING)]))
-
-# - string->int and string->float
-def interpretStringToInt(symbol, args, env, ns):
- try:
- val = int(args[0].value)
- return Int(val)
- except:
- raise InterpretPanic(symbol, "can't convert to an :int", args[0])
-
-GLOBALS.register("string->int", Builtin(interpretStringToInt, [Arg("arg", TypeEnum.STRING)]))
-
-def interpretSplit(symbol, args, env, ns):
- target = args[0]
- if len(args) == 1:
- return List([String(char) for char in target.value])
- splitter = args[1]
- ret = target.value.split(splitter.value)
- return List([String(r) for r in ret])
-
-GLOBALS.register("split", Builtin(interpretSplit, [Arg("target", TypeEnum.STRING)], Arg("splitter", TypeEnum.STRING, optional=True)))
-
-def interpretListLength(symbol, args, env, ns):
- return Int(len(args[0].args))
-
-GLOBALS.register("list-length", Builtin(interpretListLength, [Arg("arg", TypeEnum.LIST)]))
-
-def interpretFirst(symbol, args, env, ns):
- if len(args[0].args) == 0:
- raise InterpretPanic(symbol, "list is empty")
- return evaluate(args[0].args[0], env, ns)
-
-GLOBALS.register("first", Builtin(interpretFirst, [Arg("arg", TypeEnum.LIST, )]))
-
-def interpretRest(symbol, args, env, ns):
- # TODO do we know it's not evaluated?
- return List(args[0].args[1:]) # we don't evaluate the remainder of the list
-
-GLOBALS.register("rest", Builtin(interpretRest, [Arg("arg", TypeEnum.LIST)]))
-
-def interpretMap(symbol, args, env, ns):
- func = args[0]
- if not isinstance(func, Function):
- raise InterpretPanic(symbol, "requires a :func as its first argument", func)
- lst = args[1]
- if not isinstance(lst, List):
- raise InterpretPanic(symbol, "requires a :list as its second argument", lst)
- out = []
- for arg in lst.args:
- ev = func.call(Expr([func, arg]), env, ns)
- out.append(ev)
- return List(out)
-
-GLOBALS.register("map", Builtin(interpretMap, [Arg("func", TypeEnum.ANY), Arg("list", TypeEnum.LIST)]))
-
-def interpretZip(symbol, args, env, ns):
- z1 = args[0]
- z2 = args[1]
- if len(z1.args) != len(z2.args):
- raise InterpretPanic(symbol, "requires two :lists of the same size")
- out = []
- for idx in range(len(z1.args)):
- f = z1.args[idx]
- s = z2.args[idx]
- out.append(List([f, s]))
- return List(out)
-
-zip_arg = Arg("list", TypeEnum.LIST)
-GLOBALS.register("zip", Builtin(interpretZip, [zip_arg, zip_arg]))
-
-def interpretList(symbol, args, env, ns):
- return List(args)
-
-GLOBALS.register("list", Builtin(interpretList, [], Arg("item", TypeEnum.ANY)))
-
-def interpretListReverse(symbol, args, env, ns):
- new_args = args[0].args[:] # make a copy of the args
- new_args.reverse()
- return List(new_args)
-
-GLOBALS.register("list-reverse", Builtin(interpretListReverse, [Arg("list", TypeEnum.LIST)]))
-
-def interpretApply(symbol, args, env, ns):
- # TODO: to support lambdas, we can't assume the func is defined
- func = args[0]
- if not isinstance(func, Symbol):
- raise InterpretPanic(symbol, "requires a symbol as its first argument", func)
- new_lst = List([func] + args[1].args)
- return evaluate(new_lst, env, ns)
-
-GLOBALS.register("apply", Builtin(interpretApply, [Arg("func", TypeEnum.ANY, lazy=True), Arg("list", TypeEnum.LIST)]))
-
-def interpretGlob(symbol, args, env, ns):
- items = glob(args[0].value)
- return List([String(item) for item in items])
-
-GLOBALS.register("glob", Builtin(interpretGlob, [Arg("regex", TypeEnum.STRING)]))
-
-def interpretShell(symbol, args, env, ns):
- ret = subprocess.run(shlex.split(args[0].value), capture_output=True)
- return List([String(r) for r in ret.stdout.decode("utf-8").split("\n")])
-
-GLOBALS.register("$", Builtin(interpretShell, [Arg("command", TypeEnum.STRING)]))
-
-def interpretEmpty(symbol, args, env, ns):
- return Bool(len(args[0].args) == 0)
-
-GLOBALS.register("empty?", Builtin(interpretEmpty, [Arg("list", TypeEnum.LIST)]))
-
-def interpretShuf(symbol, args, env, ns):
- items = args[0].args[:]
- random.shuffle(items)
- return List(items)
-
-GLOBALS.register("shuf", Builtin(interpretShuf, [Arg("list", TypeEnum.LIST)]))
-
-def interpretIsList(symbol, args, env, ns):
- return Bool(isinstance(args[0], List))
-
-GLOBALS.register("list?", Builtin(interpretIsList, [Arg("arg", TypeEnum.ANY)]))
-
-def interpretBlock(symbol, args, env, ns):
- ret = List([])
- for arg in args:
- ret = evaluate(arg, env, ns)
- return ret
-
-block_arg = Arg("expr", TypeEnum.ANY, lazy=True)
-GLOBALS.register("block", Builtin(interpretBlock, [block_arg], block_arg))
-
-def interpretExit(symbol, args, env, ns):
- status = 0 if len(args) == 0 else args[0].value
- sys.exit(status)
- return List([])
-
-exit_arg = Arg("status", TypeEnum.INT, optional=True)
-GLOBALS.register("exit", Builtin(interpretExit, [exit_arg]))
-
-def interpretUnlink(symbol, args, env, ns):
- target_path = Path(args[0].value).resolve()
- if not target_path.exists():
- raise InterpretPanic(symbol, "target file does not exist", target_path)
- target_path.unlink()
- return List([])
-
-GLOBALS.register("unlink", Builtin(interpretUnlink, [Arg("filename", TypeEnum.STRING)]))
-
-def interpretArgv(symbol, args, env, ns):
- out = []
- for arg in sys.argv[1:]:
- out.append(String(arg))
- return List(out)
-
-GLOBALS.register("argv", Builtin(interpretArgv, []))
-
-def interpretIn(symbol, args, env, ns):
- target = args[0]
- lst = args[1]
- for arg in lst.args:
- if type(arg) == type(target) and arg.value == target.value:
- return Bool(True)
- return Bool(False)
-
-in_target_arg = Arg("target", TypeEnum.LITERAL)
-in_list_arg = Arg("list", TypeEnum.LIST)
-GLOBALS.register("in?", Builtin(interpretIn, [in_target_arg, in_list_arg]))
-
-def interpretLast(symbol, args, env, ns):
- if len(args[0].args) == 0:
- raise InterpretPanic("List is empty")
- return evaluate(args[0].args[-1], env, ns)
-
-GLOBALS.register("last", Builtin(interpretLast, [Arg("list", TypeEnum.LIST)]))
-
-def interpretJoin(symbol, args, env, ns):
- lst = args[0]
- target = args[1]
- return String(target.value.join([a.value for a in lst.args]))
-
-join_list_arg = Arg("list", TypeEnum.LIST)
-join_string_arg = Arg("joiner", TypeEnum.STRING)
-GLOBALS.register("join", Builtin(interpretJoin, [join_list_arg, join_string_arg]))
-
-def interpretWithWrite(symbol, args, env, ns):
- target_file = args[0]
- new_env = Environment(env)
- target_path = Path(target_file.value).resolve()
- ret = Literal([])
- with open(str(target_path), "w") as fil:
- new_env.register("_file_", List([fil])) # TODO wrong!
- for arg in args[1:]:
- ret = evaluate(arg, new_env, ns)
- return ret
-
-GLOBALS.register("with-write", Builtin(interpretWithWrite, [Arg("filename", TypeEnum.STRING)], Arg("exprs", TypeEnum.ANY, lazy=True)))
-
-def interpretWrite(symbol, args, env, ns):
- # write :string :filehandle
- line = args[0]
- handle = args[1]
- handle.args[0].write(line.value) # TODO wrong! how do we evaluate a handle?
- return Literal([])
-
-GLOBALS.register("write", Builtin(interpretWrite, [Arg("string", TypeEnum.STRING), Arg("filename", TypeEnum.LIST)]))
-
-def interpretNewline(symbol, args, env, ns):
- return String("\n")
-
-GLOBALS.register("newline", Builtin(interpretNewline, []))
-
-def interpretExists(symbol, args, env, ns):
- return Bool(Path(args[0].value).resolve().exists())
-
-GLOBALS.register("exists?", Builtin(interpretExists, [Arg("filename", TypeEnum.STRING)]))
-
-def interpretFirstChar(symbol, args, env, ns):
- if len(args[0].value) == 0:
- raise InterpretPanic(symbol, ":string is empty", ev)
- return String(args[0].value[0])
-
-GLOBALS.register("first-char", Builtin(interpretFirstChar, [Arg("string", TypeEnum.STRING)]))
-
-def interpretRestChar(symbol, args, env, ns):
- return String(args[0].value[1:])
-
-GLOBALS.register("rest-char", Builtin(interpretRestChar, [Arg("string", TypeEnum.STRING)]))
-
-def interpretSlice(symbol, args, env, ns):
- lst = args[0]
- idx = args[1]
- if len(args) == 2:
- return List(lst.args[idx.value - 1:])
- length = args[2]
- diff = idx.value - 1 + length.value
- return List(lst.args[idx.value - 1:diff])
-
-slice_list_arg = Arg("list", TypeEnum.LIST)
-slice_idx_arg = Arg("idx", TypeEnum.INT)
-slice_length_arg = Arg("length", TypeEnum.INT, optional=True)
-GLOBALS.register("slice", Builtin(interpretSlice, [slice_list_arg, slice_idx_arg, slice_length_arg]))
-
-def interpretClear(symbol, args, env, ns):
- subprocess.run(["clear"])
- return List([])
-
-GLOBALS.register("clear", Builtin(interpretClear, []))
-
-def interpretReadLine(symbol, args, env, ns):
- ret = input(args[0].value)
- return String(ret)
-
-GLOBALS.register("read-line", Builtin(interpretReadLine, [Arg("prompt", TypeEnum.STRING)]))
-
-def interpretReadChar(symbol, args, env, ns):
- import termios, tty
- fd = sys.stdin.fileno()
- old = termios.tcgetattr(fd)
- try:
- tty.setraw(fd)
- ch = sys.stdin.buffer.read1(4) # some keys are >1 bytes
- except Exception:
- raise
- finally:
- termios.tcsetattr(fd, termios.TCSADRAIN, old)
- return String(ch.decode("utf-8"))
-
-GLOBALS.register("read-char", Builtin(interpretReadChar, []))
-
-def interpretAppend(symbol, args, env, ns):
- lst = args[0]
- val = args[1]
- items = lst.args[:]
- return List(items + [val])
-
-GLOBALS.register("append", Builtin(interpretAppend, [Arg("list", TypeEnum.LIST), Arg("item", TypeEnum.ANY)]))
-
-# TODO: this is actually for records/structs/whatever they're called
-def interpretRemove(symbol, args, env, ns):
- lst = args[0]
- key = args[1]
- out = []
- for arg in lst.args:
- if arg.args[0].value != key.value:
- out.append(arg)
- return List(out)
-
-GLOBALS.register("remove", Builtin(interpretRemove, [Arg("list", TypeEnum.LIST), Arg("key", TypeEnum.ANY)]))
-
-def interpretWhile(symbol, args, env, ns):
- cond = args[0]
- ret = List([])
- while True:
- ev = evaluate(cond, env, ns)
- if not isinstance(ev, Bool):
- raise InterpretPanic(symbol, "expects a :bool condition", ev)
- if not ev.value:
- break
- for arg in args[1:]:
- ret = evaluate(arg, env, ns)
- return ret
-
-GLOBALS.register("while", Builtin(interpretWhile, [Arg("cond", TypeEnum.BOOL, lazy=True)], Arg("expr", TypeEnum.ANY, lazy=True)))
-
-def interpretUse(symbol, args, env, ns):
- target_file_name = args[0].value
- target_file = Path(target_file_name).resolve()
- if not target_file.exists():
- raise InterpretPanic(symbol, "no such file", target_file)
- with open(target_file, "r") as fil:
- data = fil.read()
- interpret(parse(lex(data)))
- return List([])
-
-GLOBALS.register("use", Builtin(interpretUse, [Arg("filename", TypeEnum.STRING)]))
-
-def interpretAssert(symbol, args, env, ns):
- if args[0].value != True:
- raise InterpretPanic(symbol, "assertion failed")
- return List([])
-
-GLOBALS.register("assert", Builtin(interpretAssert, [Arg("cond", TypeEnum.BOOL)]))
-
-def interpretHowTo(symbol, args, env, ns):
- if not isinstance(args[0], Function):
- raise InterpretPanic(symbol, "expects a :func", args[0])
- print(args[0].describe())
- return List([])
-
-GLOBALS.register("howto", Builtin(interpretHowTo, [Arg("symbol", TypeEnum.ANY)]))
-
-def interpretSymbols(symbol, args, env, ns):
- keys = [Symbol(k, -1) for k,v in env.environment.items()]
- return List(keys)
-
-GLOBALS.register("symbols", Builtin(interpretSymbols, []))
-
-def interpretUseAs(symbol, args, env, ns):
- target_file_name = args[0].value
- target_file = Path(target_file_name).resolve()
- if not target_file.exists():
- raise InterpretPanic(symbol, "no such file", target_file)
- with open(target_file, "r") as fil:
- data = fil.read()
- interpret(parse(lex(data)), ns=args[1].name)
- return List([])
-
-GLOBALS.register("use-as", Builtin(interpretUseAs, [Arg("filename", TypeEnum.STRING), Arg("namespace", TypeEnum.ANY, lazy=True)]))
-
-def interpretFloor(symbol, args, env, ns):
- return Int(math.floor(args[0].value))
-
-GLOBALS.register("floor", Builtin(interpretFloor, [Arg("floor", TypeEnum.NUMBER)]))
-
-def interpretFilter(symbol, args, env, ns):
- func = args[0]
- if not isinstance(func, Function):
- raise InterpretPanic(symbol, "requires a :func as its first argument", func)
- lst = args[1]
- out = []
- for arg in lst.args:
- ev = func.call(Expr([func, arg]), env, ns)
- if not isinstance(ev, Bool):
- raise InterpretPanic(symbol, "function must return :bool", ev)
- if ev.value:
- out.append(arg)
- return List(out)
-
-GLOBALS.register("filter", Builtin(interpretFilter, [Arg("func", TypeEnum.ANY), Arg("list", TypeEnum.LIST)]))
-
-def interpretTypeOf(symbol, args, env, ns):
- return Type(f"{args[0].type_}")
-
-GLOBALS.register("typeof", Builtin(interpretTypeOf, [Arg("candidate", TypeEnum.ANY)]))
-
-def interpretIsString(symbol, args, env, ns):
- return Bool(isinstance(args[0], String))
-
-GLOBALS.register("string?", Builtin(interpretIsString, [Arg("arg", TypeEnum.ANY)]))
-
-def interpretIsInt(symbol, args, env, ns):
- return Bool(isinstance(args[0], Int))
-
-GLOBALS.register("int?", Builtin(interpretIsInt, [Arg("arg", TypeEnum.ANY)]))
-
-def interpretIsFloat(symbol, args, env, ns):
- return Bool(isinstance(args[0], Float))
-
-GLOBALS.register("float?", Builtin(interpretIsFloat, [Arg("arg", TypeEnum.ANY)]))
-
-def interpretIsNumber(symbol, args, env, ns):
- ret = isinstance(args[0], Int) or isinstance(args[0], Float)
- return Bool(ret)
-
-GLOBALS.register("number?", Builtin(interpretIsNumber, [Arg("arg", TypeEnum.ANY)]))
-
-def interpretIsBool(symbol, args, env, ns):
- return Bool(isinstance(args[0], Bool))
-
-GLOBALS.register("bool?", Builtin(interpretIsBool, [Arg("arg", TypeEnum.ANY)]))
-
-def interpretUserSymbols(symbol, args, env, ns):
- keys = [Symbol(k, -1) for k,v in env.environment.items() if isinstance(v, UserFunction) or isinstance(v, Literal)]
- return List(keys)
-
-GLOBALS.register("user-symbols", Builtin(interpretUserSymbols, []))
-
-def interpretQuote(symbol, args, env, ns):
- return args[0]
-
-quote_arg = Arg("arg", TypeEnum.ANY, lazy=True)
-GLOBALS.register("quote", Builtin(interpretQuote, [quote_arg]))
-
-def interpretEval(symbol, args, env, ns):
- return evaluate(args[0], env, ns) # TODO why do i have to explicitly evaluate here?
-
-eval_arg = Arg("arg", TypeEnum.ANY)
-GLOBALS.register("eval", Builtin(interpretEval, [eval_arg]))